→バイオラプターシリーズホーム

バイオラプター2 使用論文

1.菌類破砕

1-1. Matsuzaki, Y., Aoki, W., Miyazaki, T., Aburaya, S., Ohtani, Y., Kajiwara, K., Koike, N., Minakuchi, H., Miura, N., Kadonosono, T., & Ueda, M. (2021).
Peptide barcoding for one-pot evaluation of sequenceーfunction relationships of nanobodies. In Scientific Reports (Vol. 11, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-021-01019-6
  酵母破砕、大腸菌破砕
 
1-2. Martin, A., Rex, E., Ishidate, T., Lin, R., & Gammon, D. (2017).
Infection of Caenorhabditis elegans with Vesicular Stomatitis Virus via Microinjection. In BIO-PROTOCOL (Vol. 7, Issue 22). Bio-Protocol, LLC. https://doi.org/10.21769/bioprotoc.2617
  線虫破砕
 
1-3. Nishioka, H., Ohno, T., Iwahashi, H., & Horie, M. (2021).
Diversity of Lactic Acid Bacteria Involved in the Fermentation of Awa-bancha. In Microbes and Environments (Vol. 36, Issue 4, p. n/a). Japanese Society of Microbial Ecology. https://doi.org/10.1264/jsme2.me21029
  乳酸菌からDNA抽出
 
1-4. Minegaki, N., Koshizuka, T., Hatasa, K., Kondo, H., Kato, H., Tannaka, M., Takahashi, K., Tsuji, M., & Inoue, N. (2022).
The C-Terminal Penta-Peptide Repeats of Major Royal Jelly Protein 3 Ameliorate the Progression of Inflammation in Vivo and in Vitro; In Biological and Pharmaceutical Bulletin (Vol. 45, Issue 5, pp. 583-589). Pharmaceutical Society of Japan. https://doi.org/10.1248/bpb.b21-00922
  大腸菌破砕、組織破砕
 
1-5. Wu, H., Nakazawa, T., Morimoto, R., Shivani, Sakamoto, M., & Honda, Y. (2021).
Targeted disruption of hir1 alters the transcriptional expression pattern of putative lignocellulolytic genes in the white-rot fungus Pleurotus ostreatus. In Fungal Genetics and Biology (Vol. 147, p. 103507). Elsevier BV. https://doi.org/10.1016/j.fgb.2020.103507
  菌糸体細胞 ChIPアッセイ
 
1-6. Obana, N., Nakamura, K., & Nomura, N. (2020).
Temperature-regulated heterogeneous extracellular matrix gene expression defines biofilm morphology in Clostridium perfringens. In npj Biofilms and Microbiomes (Vol. 6, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41522-020-00139-7
  大腸菌
  HISタグプロテイン抽出

 

2.ChIPアッセイ関連

2-1. Inada, H., Numayama-Tsuruta, K., Mochizuki, K., Sasaki-Hoshino, M., & Osumi, N. (2018).
Pax6-dependent regulation of the ratFabp7promoter activity. In Genes to Cells (Vol. 23, Issue 8, pp. 702-714). Wiley. https://doi.org/10.1111/gtc.12623
  ラット細胞 ChIP-qPCR
 
2-2. Kitakaze, K., Oyadomari, M., Zhang, J., Hamada, Y., Takenouchi, Y., Tsuboi, K., Inagaki, M., Tachikawa, M., Fujitani, Y., Okamoto, Y., & Oyadomari, S. (2021).
ATF4-mediated transcriptional regulation protects against β-cell loss during endoplasmic reticulum stress in a mouse model. In Molecular Metabolism (Vol. 54, p. 101338). Elsevier BV. https://doi.org/10.1016/j.molmet.2021.101338
  CT215 β細胞 ChIP-qPCR
 
2-3. Katsuda, Y., Tanaka, K., Mori, T., Narita, M., Takeshima, H., Kondo, T., Yamabe, Y., Matsufuji, M., Sato, D., Hamada, Y., Yamaguchi, K., Ushijima, T., Inada, E., Kuzumaki, N., Iseki, M., & Narita, M. (2021).
Histone modification of pain-related gene expression in spinal cord neurons under a persistent postsurgical pain-like state by electrocautery. In Molecular Brain (Vol. 14, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s13041-021-00854-y
  ChIPアッセイ
 
2-4. Han, N., Anwar, D., Hama, N., Kobayashi, T., Suzuki, H., Takahashi, H., Wada, H., Otsuka, R., Baghdadi, M., & Seino, K. (2020).
Bromodomain-containing protein 4 regulates interleukin-34 expression in mouse ovarian cancer cells. In Inflammation and Regeneration (Vol. 40, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s41232-020-00129-4
  ChIP-qPCR
 
2-5. Miyajima, Y., Ealey, K. N., Motomura, Y., Mochizuki, M., Takeno, N., Yanagita, M., Economides, A. N., Nakayama, M., Koseki, H., & Moro, K. (2020).
Effects of BMP7 produced by group 2 innate lymphoid cells on adipogenesis. In International Immunology (Vol. 32, Issue 6, pp. 407-419). Oxford University Press (OUP). https://doi.org/10.1093/intimm/dxaa013
  ChIP sequencing
 
2-6. Smith, K. N., Starmer, J., & Magnuson, T. (2018).
Interactome determination of a Long Noncoding RNA implicated in Embryonic Stem Cell Self-Renewal. In Scientific Reports (Vol. 8, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-018-34864-z
  細胞培養 RNA免疫沈降

 

3.細胞破砕

3-1. Schmal, C., Maier, B., Ashwal-Fluss, R., Bartok, O., Finger, A.-M., Bange, T., Koutsouli, S., Robles, M. S., Kadener, S., Herzel, H., & Kramer, A. (2021).
An integrative omics approach reveals posttranscriptional mechanisms underlying circadian temperature compensation. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.10.06.463236
  細胞破砕 タンパク質分散
 
3-2. Konno, R., Matsui, T., Ito, H., Kawashima, Y., Itakura, M., & Kodera, Y. (2021).
Highly accurate and precise quantification strategy using stable isotope dimethyl labeling coupled with GeLC-MS/MS. In Biochemical and Biophysical Research Communications (Vol. 550, pp. 37-42). Elsevier BV. https://doi.org/10.1016/j.bbrc.2021.02.101
  マウス脳 タンパク抽出、
  ペプチド再懸濁
 
3-3. Tachida, Y., Kumagai, K., Sakai, S., Ando, S., Yamaji, T., & Hanada, K. (2019).
Chlamydia trachomatis ‐infected human cells convert ceramide to sphingomyelin without sphingomyelin synthases 1 and 2. In FEBS Letters (Vol. 594, Issue 3, pp. 519-529). Wiley. https://doi.org/10.1002/1873-3468.13632
  Hela細胞破砕
 
3-4. Mori, D., Ishida, H., Mizuno, T., Kusumoto, S., Kondo, Y., Izumi, S., Nakata, G., Nozaki, Y., Maeda, K., Sasaki, Y., Fujita, K., & Kusuhara, H. (2020).
Alteration in the Plasma Concentrations of Endogenous Organic Anion-Transporting Polypeptide 1B Biomarkers in Patients with Non-Small Cell Lung Cancer Treated with Paclitaxel. In Drug Metabolism and Disposition (Vol. 48, Issue 5, pp. 387-394). American Society for Pharmacology & Experimental Therapeutics (ASPET). https://doi.org/10.1124/dmd.119.089474
  HEK293細胞破砕
 
3-5. Naruse, C., Sugihara, K., Miyazaki, T., Pan, X., Sugiyama, F., & Asano, M. (2022).
A degron system targeting endogenous PD-1 inhibits the growth of tumor cells in mice. In NAR Cancer (Vol. 4, Issue 2). Oxford University Press (OUP). https://doi.org/10.1093/narcan/zcac019
  タンパク質抽出
 
3-6. Ito, H., Matsui, T., Konno, R., Itakura, M., & Kodera, Y. (2021).
LC-MS peak assignment based on unanimous selection by six machine learning algorithms. In Scientific Reports (Vol. 11, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-021-02899-4
  マウス肝臓 タンパク抽出、
  ペプチド分散
 
3-7. Xu, L., Hanamatsu, H., Homan, K., Onodera, T., Miyazaki, T., Furukawa, J., Hontani, K., Tian, Y., Baba, R., & Iwasaki, N. (2020).
Alterations of Glycosphingolipid Glycans and Chondrogenic Markers during Differentiation of Human Induced Pluripotent Stem Cells into Chondrocytes. In Biomolecules (Vol. 10, Issue 12, p. 1622). MDPI AG. https://doi.org/10.3390/biom10121622
  細胞破砕
 
3-8. Kobayashi, K., Mochizuki, J., Yamazaki, F., & Sashihara, T. (2023).
Yogurt starter strains ameliorate intestinal barrier dysfunction via activating AMPK in Caco-2 cells. In Tissue Barriers. Informa UK Limited. https://doi.org/10.1080/21688370.2023.2184157
  Caco-2細胞破砕
 
3-9. Kato, K., Nagane, M., Aihara, N., Kamiie, J., Miyanabe, M., Hiraki, S., Luo, X., Nakanishi, I., Shoji, Y., Matsumoto, K., & Yamashita, T. (2021).
Lipid-soluble polyphenols from sweet potato exert antitumor activity and enhance chemosensitivity in breast cancer. In Journal of Clinical Biochemistry and Nutrition (Vol. 68, Issue 3, pp. 193-200). The Society for Free Radical Research Japan. https://doi.org/10.3164/jcbn.20-73
  細胞破砕
 
3-10. Komorizono, R., Sassa, Y., Horie, M., Makino, A., & Tomonaga, K. (2020).
Evolutionary Selection of the Nuclear Localization Signal in the Viral Nucleoprotein Leads to Host Adaptation of the Genus Orthobornavirus. In Viruses (Vol. 12, Issue 11, p. 1291). MDPI AG. https://doi.org/10.3390/v12111291
  培養細胞破砕
 
3-11. Tsukamoto, K., Kumadaki, K., Tatematsu, K., Suzuki, N., & Doi, Y. (2022).
The Passenger Domain of Bartonella bacilliformis BafA Promotes Endothelial Cell Angiogenesis via the VEGF Receptor Signaling Pathway. In S. E. F. D’Orazio (Ed.), mSphere (Vol. 7, Issue 2). American Society for Microbiology. https://doi.org/10.1128/msphere.00081-22
  HUVECs細胞破砕

 

4.その他

4-1. Hirano, S., Kanno, S., & Furuyama, A. (2008).
Multi-walled carbon nanotubes injure the plasma membrane of macrophages. In Toxicology and Applied Pharmacology (Vol. 232, Issue 2, pp. 244-251). Elsevier BV. https://doi.org/10.1016/j.taap.2008.06.016
  カーボンナノチューブ
 
4-2. Shirai, K., Hikita, H., Sakane, S., Narumi, R., Adachi, J., Doi, A., Tanaka, S., Tahata, Y., Yamada, R., Kodama, T., Sakamori, R., Tatsumi, T., Mita, E., Tomonaga, T., & Takehara, T. (2022).
Serum amyloid P component and pro-platelet basic protein in extracellular vesicles or serum are novel markers of liver fibrosis in chronic hepatitis C patients. In J. M. Jacobs (Ed.), PLOS ONE (Vol. 17, Issue 7, p. e0271020). Public Library of Science (PLoS). https://doi.org/10.1371/journal.pone.0271020
  細胞外小胞の可溶化
 
4-3. Ishikawa, M., Konno, R., Nakajima, D., Gotoh, M., Fukasawa, K., Sato, H., Nakamura, R., Ohara, O., & Kawashima, Y. (2022).
Optimization of Ultrafast Proteomics Using an LC-Quadrupole-Orbitrap Mass Spectrometer with Data-Independent Acquisition. In Journal of Proteome Research (Vol. 21, Issue 9, pp. 2085-2093). American Chemical Society (ACS). https://doi.org/10.1021/acs.jproteome.2c00121
  LC-MS/MSのサンプル調整
 
4-4. Yokoyama, D., Suzuki, S., Asakura, T., & Kikuchi, J. (2022).
Chemometric Analysis of NMR Spectra and Machine Learning to Investigate Membrane Fouling. In ACS Omega (Vol. 7, Issue 15, pp. 12654-12660). American Chemical Society (ACS). https://doi.org/10.1021/acsomega.1c06891
  ファウランドの分散
 
4-5. Kishimoto, S., Inoue, K., Sohma, R., Toyoda, S., Sakuma, M., Inoue, T., & Yoshida, K. (2020).
Surgical Injury and Ischemia Prime the Adipose Stromal Vascular Fraction and Increase Angiogenic Capacity in a Mouse Limb Ischemia Model. In Stem Cells International (Vol. 2020, pp. 1-11). Hindawi Limited. https://doi.org/10.1155/2020/7219149
  DNA切断、
  ウエスタンブロット前処理